ar X iv : m at h / 99 08 06 2 v 1 [ m at h . Q A ] 1 3 A ug 1 99 9 Hecke Algebra Representations in Ideals Generated

نویسنده

  • Bertfried Fauser
چکیده

It is a well known fact from the group theory that irreducible tensor representations of classical groups are suitably characterized by irreducible representations of the symmetric groups. However, due to their different nature, vector and spinor representations are only connected and not united in such description. Clifford algebras are an ideal tool with which to describe symmetries of multiparticle systems since they contain spinor and vector representations within the same formalism, and, moreover, allow for a complete study of all classical Lie groups. In this work, together with an accompanying work also presented at this conference, an analysis of q -symmetry – for generic q ’s – based on the ordinary symmetric groups is given for the first time. We construct q -Young operators as Clifford idempotents and the Hecke algebra representations in ideals generated by these operators. Various relations as orthogonality of representations and completeness are given explicitly, and the symmetry types of representations is discussed. Appropriate q -Young diagrams and tableaux are given. The ordinary case of the symmetric group is obtained in the limit q → 1. All in all, a toolkit for Clifford algebraic treatment of multi-particle systems is provided. The distinguishing feature of this paper is that the Young operators of conjugated Young diagrams are related by Clifford reversion, connecting Clifford algebra and Hecke algebra features. This contrasts the purely Hecke algebraic approach of King and Wybourne, who do not embed Hecke algebras into Clifford algebras. MSCS: 15A66; 17B37; 20C30; 81R25

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 99 11 07 4 v 1 [ m at h . Q A ] 1 1 N ov 1 99 9 CRYSTAL GRAPHS FOR BASIC REPRESENTATIONS OF THE QUANTUM AFFINE

We give a realization of crystal graphs for basic representations of the quantum affine algebra Uq(C (1) 2) in terms of new combinatorial objects called the Young walls.

متن کامل

ar X iv : m at h / 99 05 08 0 v 1 [ m at h . Q A ] 1 2 M ay 1 99 9 Kontsevich star - product on the dual of a Lie algebra

We show that on the dual of a Lie algebra g of dimension d, the star-product recently introduced by M. Kontsevich is equivalent to the Gutt star-product on g *. We give an explicit expression for the operator realizing the equivalence between these star-products.

متن کامل

ar X iv : 0 90 4 . 04 99 v 1 [ m at h . R T ] 3 A pr 2 00 9 DEGENERATE AFFINE HECKE - CLIFFORD ALGEBRAS AND TYPE Q LIE SUPERALGEBRAS

We construct the finite dimensional simple integral modules for the (degenerate) affine Hecke-Clifford algebra (AHCA), H aff Cℓ (d). Our construction includes an analogue of Zelevin-sky's segment representations, a complete combinatorial description of the simple calibrated H aff Cℓ (d)-modules, and a classification of the simple integral H aff Cℓ (d)-modules. Our main tool is an analogue of th...

متن کامل

ar X iv : m at h / 99 06 09 7 v 2 [ m at h . C O ] 3 1 A ug 1 99 9 BOUNDS ON ARITHMETIC PROJECTIONS , AND APPLICATIONS TO THE KAKEYA CONJECTURE

Let A, B, be finite subsets of an abelian group, and let G ⊂ A × B be such that #A, #B, #{a + b : (a, b) ∈ G} ≤ N. We consider the question of estimating the quantity #{a − b : (a, b) ∈ G}. In [2] Bourgain obtained the bound of N 2− 1 13 , and applied this to the Kakeya conjecture. We improve Bourgain's estimate to N

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999